Add (cumulative) hazard based on the provided data set and model.
If ci=TRUE confidence intervals (CI) are also added. Their width can
be controlled via the se_mult argument. The method by which the
CI are calculated can be specified by ci_type.
This is a wrapper around
predict.gam. When reference is specified, the
(log-)hazard ratio is calculated.
add_hazard(newdata, object, ...) # S3 method for default add_hazard( newdata, object, reference = NULL, type = c("response", "link"), ci = TRUE, se_mult = 2, ci_type = c("default", "delta", "sim"), overwrite = FALSE, time_var = NULL, ... ) add_cumu_hazard( newdata, object, ci = TRUE, se_mult = 2, overwrite = FALSE, time_var = NULL, interval_length = "intlen", ... )
| newdata | A data frame or list containing the values of the model covariates at which predictions
are required. If this is not provided then predictions corresponding to the
original data are returned. If |
|---|---|
| object | a fitted |
| ... | Further arguments passed to |
| reference | A data frame with number of rows equal to |
| type | Either |
| ci |
|
| se_mult | Factor by which standard errors are multiplied for calculating the confidence intervals. |
| ci_type | The method by which standard errors/confidence intervals
will be calculated. Default transforms the linear predictor at
respective intervals. |
| overwrite | Should hazard columns be overwritten if already present in
the data set? Defaults to |
| time_var | Name of the variable used for the baseline hazard. If
not given, defaults to |
| interval_length | The variable in newdata containing the interval lengths.
Can be either bare unquoted variable name or character. Defaults to |
ped <- tumor[1:50,] %>% as_ped(Surv(days, status)~ age) pam <- mgcv::gam(ped_status ~ s(tend)+age, data = ped, family=poisson(), offset=offset) ped_info(ped) %>% add_hazard(pam, type="link")#> # A tibble: 22 x 10 #> tstart tend intlen intmid interval age hazard se ci_lower ci_upper #> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0 27 27 13.5 (0,27] 59.7 -7.05 0.391 -7.83 -6.27 #> 2 27 33 6 30 (27,33] 59.7 -7.06 0.386 -7.83 -6.28 #> 3 33 55 22 44 (33,55] 59.7 -7.09 0.367 -7.82 -6.35 #> 4 55 62 7 58.5 (55,62] 59.7 -7.10 0.361 -7.82 -6.37 #> 5 62 139 77 100. (62,139] 59.7 -7.20 0.310 -7.82 -6.58 #> 6 139 209 70 174 (139,209] 59.7 -7.29 0.280 -7.85 -6.73 #> 7 209 214 5 212. (209,214] 59.7 -7.30 0.279 -7.86 -6.74 #> 8 214 257 43 236. (214,257] 59.7 -7.35 0.269 -7.89 -6.82 #> 9 257 304 47 280. (257,304] 59.7 -7.41 0.265 -7.94 -6.88 #> 10 304 308 4 306 (304,308] 59.7 -7.42 0.265 -7.95 -6.89 #> # … with 12 more rows#> # A tibble: 22 x 10 #> tstart tend intlen intmid interval age hazard se ci_lower ci_upper #> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0 27 27 13.5 (0,27] 59.7 0.000869 0.391 0.000397 0.00190 #> 2 27 33 6 30 (27,33] 59.7 0.000862 0.386 0.000398 0.00187 #> 3 33 55 22 44 (33,55] 59.7 0.000837 0.367 0.000402 0.00174 #> 4 55 62 7 58.5 (55,62] 59.7 0.000829 0.361 0.000402 0.00171 #> 5 62 139 77 100. (62,139] 59.7 0.000747 0.310 0.000402 0.00139 #> 6 139 209 70 174 (139,209] 59.7 0.000681 0.280 0.000389 0.00119 #> 7 209 214 5 212. (209,214] 59.7 0.000676 0.279 0.000387 0.00118 #> 8 214 257 43 236. (214,257] 59.7 0.000640 0.269 0.000373 0.00110 #> 9 257 304 47 280. (257,304] 59.7 0.000602 0.265 0.000355 0.00102 #> 10 304 308 4 306 (304,308] 59.7 0.000599 0.265 0.000353 0.00102 #> # … with 12 more rows#> # A tibble: 22 x 9 #> tstart tend intlen intmid interval age cumu_hazard cumu_lower cumu_upper #> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 0 27 27 13.5 (0,27] 59.7 0.0235 0.0107 0.0513 #> 2 27 33 6 30 (27,33] 59.7 0.0286 0.0131 0.0625 #> 3 33 55 22 44 (33,55] 59.7 0.0470 0.0220 0.101 #> 4 55 62 7 58.5 (55,62] 59.7 0.0528 0.0248 0.113 #> 5 62 139 77 100. (62,139] 59.7 0.110 0.0557 0.220 #> 6 139 209 70 174 (139,209] 59.7 0.158 0.0829 0.303 #> 7 209 214 5 212. (209,214] 59.7 0.161 0.0849 0.309 #> 8 214 257 43 236. (214,257] 59.7 0.189 0.101 0.356 #> 9 257 304 47 280. (257,304] 59.7 0.217 0.118 0.404 #> 10 304 308 4 306 (304,308] 59.7 0.220 0.119 0.408 #> # … with 12 more rows