Step 1: Search
Use the search function to find the show you’re looking for.
show_info <- search_query("24", type = "show")
show_info
#> # A tibble: 1 × 9
#> type score title year trakt slug tvdb imdb tmdb
#> <chr> <dbl> <chr> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 show 219. Yakamoz S-245 2022 194241 yakamoz-s-245 394252 tt13317454 195930
Step 2: Use the ID
Use the trakt
ID (recommended over other IDs) for
subsequent API calls.
In this case, we’ll use seasons_summary()
to get data for
all seasons of the show, while also getting an additional list-column
containing all episode data, which includes user ratings.
seasons <- seasons_summary(show_info$trakt, extended = "full", episodes = TRUE)
glimpse(seasons)
#> Rows: 1
#> Columns: 14
#> $ season <int> 1
#> $ rating <dbl> 6.41176
#> $ votes <int> 34
#> $ episode_count <int> 7
#> $ aired_episodes <int> 7
#> $ title <chr> "Season 1"
#> $ overview <chr> "After disaster strikes Earth, a marine biologist on a …
#> $ first_aired <dttm> 2022-04-20 07:00:00
#> $ updated_at <dttm> 2024-12-01 04:15:21
#> $ network <chr> "Netflix"
#> $ episodes <list> [<tbl_df[7 x 17]>]
#> $ trakt <chr> "290166"
#> $ tvdb <chr> NA
#> $ tmdb <chr> "284769"
Step 3: Tidying up
We’re interested in the episodes
list-column, which
needs unnesting. In this case we can simply use
dplyr::bind_rows
to take the list of tbls
that
is seasons$episodes
and basically rbind
them
all together, meaning the result is a tibble
of the episode
data we care about.
library(dplyr)
episodes <- bind_rows(seasons$episodes)
glimpse(episodes)
#> Rows: 7
#> Columns: 17
#> $ season <int> 1, 1, 1, 1, 1, 1, 1
#> $ episode <int> 1, 2, 3, 4, 5, 6, 7
#> $ title <chr> "Episode 1", "Episode 2", "Episode 3", "Episode…
#> $ episode_abs <lgl> NA, NA, NA, NA, NA, NA, NA
#> $ overview <chr> "Arman reluctantly embarks on a submarine resea…
#> $ rating <dbl> 6.90441, 6.97222, 7.03884, 7.25843, 7.09195, 7.…
#> $ votes <int> 136, 108, 103, 89, 87, 84, 87
#> $ comment_count <int> 1, 0, 1, 0, 1, 1, 1
#> $ first_aired <dttm> 2022-04-20 07:00:00, 2022-04-20 07:00:00, 2022-…
#> $ updated_at <dttm> 2024-12-01 01:15:45, 2024-12-01 01:15:45, 2024-…
#> $ available_translations <list> <"cs", "de", "el", "en", "fr", "it", "ko", "pl"…
#> $ runtime <int> 46, 44, 41, 51, 50, 54, 50
#> $ episode_type <chr> "series_premiere", "standard", "standard", "sta…
#> $ trakt <chr> "5990234", "6014174", "6014175", "6014176", "60…
#> $ tvdb <chr> "8209034", "8209035", "8209036", "8209037", "8…
#> $ imdb <chr> "tt13840052", "tt13840054", "tt13840058", "tt1…
#> $ tmdb <chr> "3617839", "3640494", "3640495", "3640496", "3…
Step 4: Graph!
Now we have our episode data in a tidy form, might as well look at it.
library(ggplot2)
ggplot(data = episodes, aes(x = episode, y = rating, color = votes)) +
geom_point(size = 3, alpha = 2 / 3) +
facet_wrap(~season, nrow = 1, scales = "free_x") +
scale_x_continuous(breaks = c(1, 10, 20), expand = c(0, 3)) +
scale_y_continuous(breaks = seq(0, 10, .5), minor_breaks = seq(0, 10, .25), limits = c(7, 9)) +
scale_color_viridis_c() +
guides(color = guide_colorbar(barwidth = unit(6, "cm"), title.vjust = .75)) +
labs(
title = "24: Episode Ratings on trakt.tv",
subtitle = "Episode ratings by trakt.tv users by season",
x = "Episode Number", y = "Rating (1-10)", color = "# of Votes",
caption = "jemus42.github.io/tRakt"
) +
theme_minimal() +
theme(
legend.position = "bottom"
)