Implementation of CFI using modular sampling approach
References
Blesch, Kristin, Koenen, Niklas, Kapar, Jan, Golchian, Pegah, Burk, Lukas, Loecher, Markus, Wright, N. M (2025). “Conditional Feature Importance with Generative Modeling Using Adversarial Random Forests.” Proceedings of the AAAI Conference on Artificial Intelligence, 39(15), 15596–15604. doi:10.1609/aaai.v39i15.33712 .
Super classes
xplainfi::FeatureImportanceMethod
-> xplainfi::PerturbationImportance
-> CFI
Methods
Method new()
Creates a new instance of the CFI class
Usage
CFI$new(
task,
learner,
measure,
resampling = NULL,
features = NULL,
relation = "difference",
iters_perm = 1L,
sampler = NULL
)
Arguments
task, learner, measure, resampling, features
Passed to
PerturbationImportance
.relation
(character(1)) How to relate perturbed scores to originals. Can be overridden in
$compute()
.iters_perm
(integer(1)) Number of sampling iterations. Can be overridden in
$compute()
.sampler
(ConditionalSampler) Optional custom sampler. Defaults to instantiationg
ARFSampler
internally with default parameters.
Examples
library(mlr3)
task = tgen("2dnormals")$generate(n = 100)
cfi = CFI$new(
task = task,
learner = lrn("classif.ranger", num.trees = 50, predict_type = "prob"),
measure = msr("classif.ce")
)
#> ℹ No <ConditionalSampler> provided, using <ARFSampler> with default settings.
#> ℹ No <Resampling> provided, using holdout resampling with default ratio.
cfi$compute()
#> Key: <feature>
#> feature importance
#> <char> <num>
#> 1: x1 0.12121212
#> 2: x2 0.09090909