A KnockoffSampler defaulting to second-order Gaussian knockoffs
as created by seqknockoff::knockoffs_seq
.
Details
This is equivalent to KnockoffSampler using knockoff_fun = seqknockoff::knockoffs_seq
.
References
Watson D, Wright M (2021). “Testing conditional independence in supervised learning algorithms.” Machine Learning, 110(8), 2107-2129. doi:10.1007/s10994-021-06030-6 .
Blesch K, Watson D, Wright M (2023). “Conditional feature importance for mixed data.” AStA Advances in Statistical Analysis, 108(2), 259-278. doi:10.1007/s10182-023-00477-9 .
Super classes
xplainfi::FeatureSampler
-> xplainfi::ConditionalSampler
-> xplainfi::KnockoffSampler
-> KnockoffSequentialSampler
Public fields
feature_types
(
character()
) Feature types supported by the sampler. Will be checked against the provied mlr3::Task to ensure compatibility.x_tilde
Knockoff matrix
Methods
Method new()
Creates a new instance using sequential knockoffs via seqknockoff::knockoffs_seq
.
Usage
KnockoffSequentialSampler$new(task, iters = 1)
Arguments
task
(mlr3::Task) Task to sample from.
iters
(
integer(1)
: 1) Number of repetitions theknockoff_fun
is applied to create multiplex_tilde
instances per observation.
Examples
if (FALSE) { # \dontrun{
# Requires seqknockoff (https://github.com/kormama1/seqknockoff)
task = tgen("simplex")$generate(n = 100)
sampler_seq = KnockoffSampler$new(task)
sampled_seq = sampler_seq$sample("x1")
} # }